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 A B S T R A C T  

Objective: Polypharmacology, interaction of one drug with multiple 
targets, emerged as an effective approach in drug discovery and 
development. Bioinformatics and cheminformatics methods are 
essential tools for determination of polypharmacological profiles of 
newly synthesized or known compounds and drugs. Previously, three 
novel triazolothiadiazine derivatives; 1h, 3c and 3h, have been shown to 
induce apoptosis and cause cell cycle arrest on liver cancer cells. The aim 
of this study is to find possible action mechanisms and potential targets 
for these three triazolothiadiazine derivatives, and to investigate their 
potential as new therapeutic agents by using computational methods. 

Materials and Methods: PASS software was used to identify biological 
activities and Swiss Target Prediction and BindingDB databases to 
predict potential targets for 1h, 3c and 3h. PDE4A, ALR and DUSP1 
proteins were selected for molecular docking analysis following the 
protein modeling of the three proteins. 

Results: Activity prediction results show that 1h, 3c and 3h might 
have phosphatase and signal transduction pathway inhibitor, 
hepatocyte growth factor antagonist, anti-inflammatory and antifungal 
activities. These derivatives are predicted as inhibitors of several 
phosphodiesterases by activity and target prediction tools. 

Conclusion: Based on prediction and molecular docking results, it is 
proposed that these compounds may have therapeutic properties 
through new predicted targets.

Keywords: Molecular docking, pharmacology, similarity searching, 
triazolothiadiazines
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INTRODUCTION

Polypharmacology is considered as an emerging 
approach in discovery and development of new 
drugs. The idea behind polypharmacology comes 
from the notion; a drug can act on different 
targets of a disease pathway or several disease 
pathways [1]. Bioinformatics approaches provide 
tools for drug development processes, such as 
target discovery and prediction of drug-target 
interactions [2,3]. Using computational methods 
for such studies ease the drug discovery and 

development process, and reduce the expanses 
on drug discovery [4,5]. Therefore, in silico activity 
and target prediction methods are valuable tools to 
estimate probable activities and targets for newly 
synthesized compounds. 

For newly synthesized compounds, in silico target 
fishing is used to predict potential targets by mining 
chemical databases. Similarity searching is one of 
the approaches for searching potential targets for 
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a compound. The main idea for similarity searching 
is chemically similar compounds may interact with 
similar protein targets [6]. Therefore, by comparing 
the structure of newly synthesized compound with 
the structure of the known compounds with known 
targets, the potential targets for novel compound 
can be predicted. 

Molecular docking is performed to assess the 
potential interaction or binding geometries 
according to the structure of the novel compound 
and target protein. Potential targets are virtually 
docked to novel compounds to identify potential 
interactions [7,8].

Previously, some novel triazolothiadiazine 
derivatives (1a–3j) have been synthesized, 
characterized and searched for their anti-
proliferative effects on liver cancer cells [9]. Among 
30 compounds, 5 of them, 1e, 1g, 1h, 3c and 3h 
have been shown to cause apoptosis and cell 
cycle arrest at SubG1 phase of cell cycle. Two of 
the derivatives (1g and 1h) have been studied in 
detail and proposed as promising anti-proliferative 
compounds acting by activating ASK-1 and 
inactivating Akt [9]. In this study, three of these 
derivatives 1h, 3c and 3h, which may be potential 
therapeutic agents for cancers were selected. 
Detailed action mechanisms of these derivatives 
have not been shown in previous studies, since 
experimentally testing all possible interactions 
is not feasible. Biological activities and potential 
targets of 1h, 3c and 3h were searched by using 
prediction tools. In order to show the interaction 
of the derivatives to predicted targets, molecular 
docking between three of the compounds were 
performed.

MATERIALS AND METHODS

Simplified Molecular Input Line Entry 
Specification (SMILES) generation for the 
compounds 1h, 3c and 3h
A SMILE is an ASCII string, which is used to represent 
the chemical structure of the compound. SMILES 
strings of three compounds were generated by 
using Swiss Target Prediction according to the 
structure of each molecule ([10], http://www.
swisstargetprediction.ch/). 

Druglikeness of the compounds 1h, 3c and 3h
Druglikeness of 1h, 3c and 3h according to 
Lipinski’s rule of five for evaluated with SwissADME 
([11], http://www.swissadme.ch/index.php).

Computational determination of biological 
activities of the compounds 1h, 3c and 3h
Biological activity prediction for triazolothiadiazine 
derivatives was performed by using PASS online 
version 2.0 ([12], http://www.way2drug.com/
passonline/). In order to estimate the probable 
activities of 1h, 3c and 3h, SMILES strings for each 
compound loaded to PASS online. The prediction 
results were provided as predicted activities and 
corresponding probabilities as Pa (to be active) 
and Pi (to be inactive), ranging from 0 to 1. In the 
PASS prediction approach, biological activity is 
predicted based on the structural formula of a 
compound for more than 4000 kinds of biological 
activity with an average accuracy above 95%. 
Structure-activity relationships are considered for 
prediction in the training set involving more than 
300.000 organic compounds [12]. When the Pa>Pi, 
the activity is probable for the compound. Pa>0.7 
means in an experiment the chance of finding the 
predicted activity is high. When Pa<0.5, the chance 
of finding the predicted activity in an experiment 
is low, however, it also means that there is a 
chance of finding a structurally new compound. 
Between those values, which are 0.5<Pa<0.7, the 
probability of finding the activity in an experiment 
is less, since the compound is not similar to known 
pharmaceuticals [13, 14]. Therefore, the higher 
Pa values increase the chance to find the activity 
experimentally; also indicate the compound is 
similar to known pharmaceutical agents.

Target prediction for the compounds 1h, 3c and 
3h
Swiss Target Prediction [10] (based on ChEMBL16) 
and BindingDB ([15], https://www.bindingdb.org/) 
were used to predict potential targets for each 
of the three compounds. The SMILES strings of 
the compounds were inputted to the databases 
separately and prediction results were reported. 

Swiss Target Prediction computes 2D and 3D 
similarity values for the query compounds 
against the known ligands. In 2D similarity, FP2 
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fingerprints are used to define the molecules 
and Tanimoto coefficient (the number of shared 
fingerprint patterns/total number of fingerprint 
patterns) is used to quantify the similarity between 
molecules. In 3D similarity, different conformations 
of molecules are produced and Manhattan 
distances are calculated for all the conformations 
of each molecule. The target scores are calculated 
according to the logistic regressions with the 2D 
and 3D similarity scores of most similar ligands. 
Target scores rank the possible targets (between 
0 to 1, larger when the query compound is the 
known ligand of the target) and are used to obtain 
the probability, which assesses the likelihood of the 
correct prediction [10].

Find My Compound’s Targets (FMCT) tool of the 
BindingDB database was used to find targets for the 
compounds 1h, 3c and 3h, according to the notion 
that similar compounds might bind the same 
proteins. FMCT provided the proposed protein 
targets with the similarity scores (max similarity) of 
query compounds to compounds in the database 
which bind to proposed protein targets, based on 
Similarity Ensemble Approach (SEA) [15].

Molecular Docking
Phyre2, Protein Homology/analogY Recognition 
Engine V 2.0, ([16], http://www.sbg.bio.ic.ac.uk/
phyre2)) was used to prepare the models of human 
PDE4A, ALR and DUSP1, since the crystal structures 
of these proteins in PDB database were partial 
and/or in complex with other molecules or carried 
mutated residues. Docking calculations of the 
predicted target proteins to 1h, 3c and 3h were 
performed using SwissDock ([8,17], http://www.
swissdock.ch/). Following parameters were used 
for dockings; docking type “Accurate” and flexibility 
for side chains within 0Å. SwissDock reported 
FullFitness and Gibbs free energy (ΔG) to evaluate 
favorable bindings for each molecular docking. 
For each docking, the most energetically favorable 
binding, which has a greater negative FullFitness 
score, of the triazolothiadiazine derivative to the 
target protein was selected and visualized. UCSF 
Chimera [18], developed by the Resource for 
Biocomputing, Visualization, and Informatics at the 
University of California, San Francisco was used to  
 

visualize the results generated by SwissDock and to 
prepare MOL2 files of the compounds. 

RESULTS

Druglikeness of 1h, 3c and 3h
Lipinski’s rule of five, which has been used evaluate 
the druglikeness of a chemical compound, predicts 
that if a compound has more than 5 H-bond donors, 
10 H-bond acceptors, a molecular weight higher 
than 500 and calculated Log P greater than 5, it 
may show poorer absorption or permeation [19]. 
According to predictions, all three compounds met 
the criteria by having molecular weight between 
406-449 (<500), H-bond donors 0 (<5) and H-bond 
acceptors between 4-5 (<10), although they did not 
have Log P less than 5, except 1h (Table 1).

Biological activity prediction for the compounds 
1h, 3c and 3h  
Previously, the apoptotic and anti-proliferative 
activities of the compounds 1h, 3c and 3h were 
shown experimentally [9]. In order to estimate 
new possible activities for these derivatives, PASS 
prediction tool was used. According to PASS 
predictions, compounds 1h, 3c and 3h might have 
several biological activities, such as phosphatase 
and signal transduction pathway inhibitors, had 
anti-inflammatory effects, and were hepatocyte 
growth factor and Neuropeptide Y2 antagonists 
(Pa>0.5, Table 2). All three derivatives predicted as 
inhibitors of several phosphodiesterases (PDEs), 
Cyclin-dependent kinase 5 (CDK5), Protein-tyrosine 
phosphatase 2C (PTP2C, also known as SHP2 
and PTPN11) and Dual specificity phosphatase 1 
(DUSP1), which regulate removal of phosphate 
groups from tyrosine residues (Table 2).

Table 1. Physicochemical Properties of 1h, 3c and 3h

Descriptor Value 1h Value 3c Value 3h

Molecular Weight (g/mol) 406.54 448.94 444.52

Consensus Log P 4.85 5.87 5.25

Rotatable Bonds 6 4 5

H-bond Acceptors 4 4 5

H-bond Donors 0 0 0
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Table 2. The predicted activities for 1h, 3c and 3h

1h 3c 3h
Activity Pa Pi Pa Pi Pa Pi
Phosphatase inhibitor 0.721 0.009 0.735 0.007 0.705 0.012
Hepatocyte growth factor antagonist 0.635 0.002 0.697 0.002 0.665 0.002
Neuropeptide Y2 antagonist 0.54 0.01 0.57 0.008 0.52 0.013
Signal transduction pathways inhibitor 0.526 0.026 0.779 0.008 0.718 0.011
Antiinflammatory 0.51 0.054 0.562 0.04 0.553 0.043
Calpain inhibitor 0.415 0.012 0.304 0.042 0.296 0.045
Anesthetic general 0.422 0.034 0.189 0.145 0.186 0.149
Growth factor antagonist 0.349 0.013 0.457 0.008 0.459 0.007
Respiratory distress syndrome treatment 0.345 0.016 0.301 0.028 0.303 0.028
Antifungal 0.369 0.057 0.29 0.085 0.263 0.099
Amyloid beta precursor protein antagonist 0.31 0.02 0.511 0.005 0.496 0.005
Alkaline phosphatase inhibitor 0.265 0.021 0.387 0.006 0.36 0.008
Anesthetic 0.256 0.05 - - - -
5 Hydroxytryptamine release inhibitor 0.325 0.12 - - - -
Phosphodiesterase 4A inhibitor 0.207 0.006 0.162 0.009 0.192 0.007
Phosphodiesterase 10A inhibitor 0.194 0.004 0.223 0.004 0.247 0.003
Phosphodiesterase X inhibitor 0.194 0.004 0.223 0.004 0.247 0.003
Cyclin-dependent kinase 5 inhibitor 0.182 0.005 0.214 0.004 0.19 0.004
Protein-tyrosine phosphatase 2C inhibitor 0.175 0.004 0.192 0.004 0.185 0.004
Sphingosine 1-phosphate receptor antagonist 0.206 0.04 0.189 0.054 0.138 0.108
Protein phosphatase inhibitor 0.176 0.039 0.142 0.053 0.16 0.045
Macrophage elastase inhibitor 0.138 0.01 0.099 0.018 0.099 0.018
Neuropeptide Y1 antagonist 0.149 0.03 0.148 0.031 0.148 0.032
Cyclin-dependent kinase inhibitor 0.14 0.023 0.192 0.015 0.159 0.019
Phosphodiesterase IV inhibitor 0.132 0.016 - - 0.12 0.018
ATPase stimulant 0.22 0.106 - - - -
Protein-tyrosine phosphatase inhibitor 0.152 0.039 0.134 0.047 0.149 0.04
Mucolytic 0.19 0.078 - - - -
Phosphodiesterase 3A inhibitor 0.124 0.016 0.119 0.018 0.124 0.016
Sphingosine 1-phosphate receptor 1 antagonist 0.174 0.072 0.159 0.093 - -
Mcl-1 antagonist 0.165 0.063 0.155 0.069 0.159 0.066
Dual specificity phosphatase 1 inhibitor 0.179 0.08 0.197 0.056 0.192 0.062
CC chemokine receptor 2B antagonist 0.167 0.069 - - - -
Phosphodiesterase 4D inhibitor 0.108 0.017 0.065 0.037 0.103 0.019
Expectorant 0.181 0.093 - - - -
Phosphodiesterase 4B inhibitor 0.101 0.018 0.066 0.038 0.104 0.017
HIF1A expression inhibitor 0.277 0.204 - - - -
Phosphodiesterase inhibitor 0.114 0.043 - - 0.098 0.053
Sphingosine 1-phosphate receptor 4 antagonist 0.142 0.075 0.12 0.11 - -
Cyclooxygenase 3 inhibitor 0.087 0.021 - - - -
Serum-glucocorticoid regulated kinase 1 inhibitor 0.23 0.165 - - - -
Fibrosis treatment 0.116 0.068 0.11 0.077 0.126 0.054
Linoleate diol synthase inhibitor 0.235 0.187 - - - -
Cardiotonic 0.208 0.16 - - - -
Phosphodiesterase III inhibitor 0.08 0.032 - - 0.067 0.042
Preneoplastic conditions treatment 0.259 0.212 - - - -
Angiotensin II receptor agonist 0.138 0.1 - - - -
Phosphodiesterase 4C inhibitor 0.066 0.029 - - 0.061 0.033
Complement C5a chemotactic receptor antagonist 0.059 0.025 0.04 0.038 - -
Antiviral (Rhinovirus) 0.295 0.263 - - - -

Pa, probability to be active; Pi, probability to be inactive
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Table 2. Continued

1h 3c 3h
Activity Pa Pi Pa Pi Pa Pi
Calcium channel N-type blocker 0.123 0.092 0.144 0.068 0.153 0.061
Biotinidase inhibitor 0.236 0.207 - - - -
Platelet aggregation inhibitor 0.181 0.154 - - - -
PRL phosphatase inhibitor 0.081 0.058 - - 0.084 0.048
Benzoin aldolase inhibitor 0.054 0.033 - - - -
Sphingosine 1-phosphate receptor 5 antagonist 0.041 0.026 - - - -
Matrix metalloproteinase 1 (membrane-type) 
inhibitor

0.035 0.024 - - - -

Vesicle monoamine transporter inhibitor 0.032 0.022 - - - -
T-cell protein-tyrosine phosphatase inhibitor 0.032 0.022 - - 0.03 0.027
Sphingosine 1-phosphate receptor 3 antagonist 0.061 0.056 - - - -
Calcium channel (voltage-sensitive) activator 0.302 0.301 - - - -
Plastoquinol-plastocyanin reductase inhibitor 0.180 0.180 - - - -
Glycogen synthase stimulant - - 0.295 0.081 0.27 0.111
Diabetic neuropathy treatment - - 0.338 0.134 - -
Janus tyrosine kinase 2 inhibitor - - 0.229 0.052 0.21 0.066
GABA receptor agonist - - 0.225 0.056 0.148 0.138
Histamine H1 receptor agonist - - 0.218 0.05 - -
5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase 
inhibitor

- - 0.328 0.202 - -

Fibromyalgia syndrome treatment - - 0.192 0.066 - -
Chloride channel activator - - 0.218 0.1 - -
Muscle relaxant - - 0.217 0.101 - -
Dihydroorotase inhibitor - - 0.168 0.084 - -
Rheumatoid arthritis treatment - - 0.202 0.127 0.169 0.163
Anticonvulsant - - 0.237 0.161 - -
Sporulation kinase A inhibitor - - 0.101 0.034 - -
Autophagy inducer - - 0.099 0.047 - -
Lysyl oxidase inhibitor - - 0.227 0.203 - -
Antianemic - - 0.123 0.099 - -
Cognition disorders treatment - - 0.183 0.166 - -
Premenstrual syndrome treatment - - 0.092 0.076 0.091 0.08
Skeletal muscle relaxant - - 0.179 0.163 - -
Lanosterol 14 alpha demethylase inhibitor - - 0.111 0.097 - -
Neuropeptide Y antagonist - - 0.085 0.078 - -
Transglutaminase 2 inhibitor - - 0.09 0.085 0.096 0.068
Alpha 2d adrenoreceptor agonist - - 0.023 0.019 - -
Scytalone dehydratase inhibitor - - 0.069 0.066 - -
Potassium channel small-conductance Ca-activated 
activator

- - 0.055 0.053 - -

Glutamate release inhibitor - - 0.102 0.1 - -
Antinociceptive - - - - 0.334 0.157
CYP2D15 substrate - - - - 0.264 0.255
Interleukin 1 antagonist - - - - 0.109 0.097
Antineoplastic - - - - 0.266 0.175
Calcium channel activator - - - - 0.203 0.138
Aspulvinone dimethylallyltransferase inhibitor - - - - 0.304 0.267

Pa, probability to be active; Pi, probability to be inactive
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Target prediction for the compounds 1h, 3c and 
3h
In order to predict the potential molecular targets 
of the compounds, Swiss Target Prediction [10] 
and BindingDB [15] were used. Swiss Target 
Prediction predicted muscleblind-like proteins 
(encoded by MBNLs), FAD-linked sulfhydryl oxidase 
ALR (ALR, which is encoded by GFER), several 
phosphodiesterases (encoded by PDEs) and 
microtubule-associated protein tau (encoded by 
MAPT) as potential targets for compounds 1h, 3c 
and 3h (Table 3). 

BindingDB couldn’t predict any target for 
compound 3c, while Cholinesterases were 
predicted as a target for both compounds 1h and 
3h. cAMP-specific 3’,5’-cyclic phosphodiesterase 4A 
(PDE4A), Carbonic anhydrases and Steroidogenic 
factor-1 (SF-1, encoded by NR5A1) were predicted 
as targets for only 1h by BindingDB (Table 4).

Molecular Docking for Selected Targets with the 
compounds 1h, 3c and 3h
Molecular dockings were performed with the 
selected targets, PDE4A, ALR and DUSP1, which were 

predicted as targets for all three triazolothiadiazine 
derivatives by activity and/or target predictions. 
The most favorable scores between target proteins 
and compounds were selected and visualized. 
According to docking results compounds 3c and 
3h might interact to the same region on DUSP1 
protein (Figure 1). All derivatives predicted to 
interact at the same interaction site on ALR (Figure 
2), while they predicted to interact at the different 
interaction region on PDE4A protein (Figure 3).

Table 3. The predicted targets of 1h, 3c and 3h by Swiss Target Prediction (based on ChEMBL16)

Gene Target
Prediction probability

1h 3c 3h

MBNL1 Muscleblind-like protein 1 0.77 0.55 0.75

MBNL2 Muscleblind-like protein 2 0.77 0.55 0.75

MBNL3 Muscleblind-like protein 3 0.77 0.55 0.75

GFER FAD-linked sulfhydryl oxidase ALR 0.64 0.53 0.63

PDE4A cAMP-specific 3', 5'-cyclic phosphodiesterase 4A 0.51 0.34 0.63

PDE4B cAMP-specific 3', 5'-cyclic phosphodiesterase 4B 0.51 0.34 0.63

PDE4C cAMP-specific 3', 5'-cyclic phosphodiesterase 4C 0.51 0.34 0.63

PDE4D cAMP-specific 3', 5'-cyclic phosphodiesterase 4D 0.51 0.34 0.63

PDE10A cAMP and cAMP-inhibited cGMP 3', 5'-cyclic phosphodiesterase 10A 0.49 0.28 0.46

MAPT Microtubule-associated protein tau 0.49 0.53 0.53

ALPL Alkaline phosphatase tissue-nonspecific isozyme 0.4 0.1 0.37

ALPP Alkaline phosphatase placental type 0.4 0.1 0.37

ALPI Intestinal-type alkaline phosphatase 0.4 - -

ALPPL2 Alkaline phosphatase placental-like 0.4 - -

DYRK1A Dual specificity tyrosine-phosphorylation-regulated kinase 1A 0.37 0.32 0.41

MCL1 Induced myeloid leukemia cell differentiation protein Mcl-1 - 0.16 -

PGR Progesterone receptor - 0.11 -

PDE3B cGMP-inhibited 3', 5'-cyclic phosphodiesterase B - - 0.41

PDE3A cGMP-inhibited 3', 5'-cyclic phosphodiesterase A - - 0.39

Table 4. Target prediction of 1h and 3h, by BindingDB 
(similarity 0.7)

Predicted targets
Max Similarity

1h 3h

Cholinesterases 0.70 0.70

cAMP-specific 3',5'-cyclic 
phosphodiesterase 4A

0.70 -

Carbonic anhydrase 0.70 -

Carbonic anhydrase 2 0.70 -

Carbonic anhydrases; II & IX 0.70 -

Steroidogenic Factor 1 0.70 -
Max Similarity, maximum similarity of the query compounds to 
BindingDB compounds tested against Targets
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DISCUSSION

Although, conventionally drugs or compounds have 
been designed to object a single biological target 
with high selectivity to avoid interaction of a drug 
with other biological molecules, the complexity of 
many diseases highlighted the importance of multi 
target drugs as effective therapeutic candidates 
[1,20,21]. Computational studies to predict novel 
activity and targets for known compounds are 
valuable instruments in using these compounds as 
therapeutics for diseases. 

Figure 1. The most favorable molecular docking of 
DUSP1 and 1h (A), 3c (B) and 3h (C). The modeling of 
DUSP1 was generated with Phyre2 [16]. SwissDock [8, 
17] was used for dockings and the molecular docking 
results were visualized by UCSF Chimera package [18]. 
The FullFitness and deltaG Kcal/mol for 1h, -1705.54 and 
-8.20, for 3c -1680.96 and -8.16 and for 3h -1677.17 and 
-7.98.

Figure 3. The most favorable molecular docking of 
PDE4A and 1h (A), 3c (B) and 3h (C). The modeling of 
PDE4A was generated with Phyre2 [16]. SwissDock 
[8,17] was used for dockings and the molecular docking 
results were visualized by UCSF Chimera package [18]. 
The FullFitness and deltaG Kcal/mol for 1h, -5792.27 and 
-8.39, for 3c -5764.08 and -8.36 and for 3h -5762.75 and 
-8.62.

Figure 2. The most favorable molecular docking of ALR 
and 1h (A), 3c (B) and 3h (C). The modeling of ALR was 
generated with Phyre2 [16]. SwissDock [8,17] was used 
for dockings and the molecular docking results were 
visualized by UCSF Chimera package [18]. The FullFitness 
and deltaG Kcal/mol for 1h, -1786.17 and -8.39, for 3c 
-1756.90 and -9.10 and for 3h -1759.01 and -9.17.
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In this study, three triazolothiadiazine derivatives, 
1h, 3c and 3h, which have been demonstrated 
to cause cell cycle arrest at SubG1, indication of 
apoptosis, in liver cancer cells, was selected [9]. 
Possible action mechanisms and protein targets 
of these derivatives, were investigated by using 
computational methods. According to activity 
and target prediction results, potential targets 
and activities of 1h, 3c and 3h were reported. PDE 
proteins, especially PDE4A, emerged from both 
biologic activity and target prediction results. 
Molecular docking analysis showed the potential 
interaction regions for three derivatives with PDE4A. 
In addition to PDE4A, possible interactions of three 
derivatives with ALR and DUSP1, which function in 
liver regeneration and cell signaling, respectively, 
were shown by molecular docking analysis. Based 
on the results presented here, these compounds 
may have therapeutic properties through new 
predicted targets.

Results for pharmacokinetic property predictions 
of 1h, 3c and 3h showed that these compounds 
might be considered as drug candidates, since they 
mostly met the Lipinski’s rule of five (Table 1). 

According to the activity prediction results, all three 
triazolothiadiazine derivatives had phosphatase 
inhibitor, alkaline phosphatase inhibitor, 
hepatocyte growth factor antagonist, Neuropeptide 
Y2 antagonist, signal transduction pathways 
inhibitor and anti-inflammatory activities (Table 2). 
In addition to activity prediction, target prediction 
results also proposed alkaline phosphatases as 
targets of 1h, 3c and 3h (Table 3). Phosphatase, 
especially alkaline phosphatase inhibitor activity of 
three compounds might be relevant for therapeutic 
potential of these derivatives in cancers, since the 
coumarin–triazolothiadiazine hybrid compounds, 
which have alkaline phosphatase inhibitor activity, 
were reported as potential anticancer agents [22]. 

These three triazolothiadiazine derivatives, 1h, 
3c and 3h, have been shown to cause cell cycle 
arrest at SubG1 stage in liver carcinoma cells 
experimentally [9]. According to results presented 
in this study, these three triazolothiadiazine 
derivatives may have potential involvement in 
liver cell proliferation or regeneration with both 
activity and target prediction analyses (Table 2 
and Table 3). ALR is a critical protein for hepatocyte 
survival and depletion of ALR caused apoptosis and 
necrosis in rat hepatocytes [23]. ALR depletion not 

only affects liver cells, in human derived glioma 
cells decreased ALR expression caused an increase 
in apoptosis [24]. Overexpression of ALR induced 
cell proliferation and inhibited cell death induced 
by H2O2 in normal human hepatic cell line [25]. 
In addition to intracellular functions, ALR has 
extracellular effects; ALR is released from damaged 
hepatocytes and has been proposed as a hepatic 
stress/injury marker [26]. In this study, ALR was 
predicted as target for all three compounds (Table 
3). Also in molecular docking analyses, all three 
derivatives predicted to interact at the same region 
on ALR protein (Figure 2). These results suggest that 
in addition to reported factors [9], compounds 1h, 
3c and 3h might effect the cell cycle progression in 
liver cancer cells via their interaction with ALR.

Previously, the action mechanism of one of the 
compounds, 1h, was shown to be through the 
activation ASK-1 and inactivation of Akt proteins [9]. 
Activity prediction results estimated that all three 
compounds were protein-tyrosine phosphatase 
2C (SHP2) and DUSP1 inhibitors (Table 2). SHP2, a 
mediator of Erk and PI3K/Akt signaling activation, 
has been related to cancer by its role in increasing 
cell proliferation and preventing apoptosis [27]. 
Therefore, several inhibitors have been developed 
to target SHP2 [28-30]. Since SHP2 has been shown 
to activate Akt signaling and prevent apoptosis 
[27], PASS prediction results on the inhibition of 
SHP2 by 1h, 3c and 3h might be related with the 
previous report indicating 1h inactivated Akt 
and increased apoptosis [9]. Compound 1h has 
also been shown to decrease phosphorylation 
of ASK-1 and leads to ASK-1 activation. Activated 
ASK-1 activates JNK protein and causes apoptosis 
in liver cancer cells [9]. It has been reported that 
activated PI3-K/Akt signaling pathway cause a 
decrease in ASK-1 induced apoptosis through 
ASK-1 phosphorylation by Akt [31]. Therefore, by 
inhibiting SHP2 activity, compounds 1h, 3c and 
3h may inactivate Akt, which increase apoptosis in 
cells. However, it should be noted that, in addition 
to Akt, SHP2 is one of the regulators of ASK-1. 
SHP2 activates ASK1-JNK signaling pathway, by 
dephosphorylating ASK-1 [32]. PASS prediction 
tool also proposed compounds 1h, 3c and 3h as 
DUSP-1 inhibitors (Table 2). In addition, according 
to molecular docking results, compounds 3h and 
3c predicted to interact with the same region 
on DUSP1 protein, while 1h interacted with a 
different region (Figure 1). DUSP1 also regulates 
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JNK mediated apoptosis; DUSP1 inactivates JNK 
by dephosphorylation and protects cancer cells 
from apoptosis [33]. Therefore, prediction results 
propose another action mechanism for these novel 
compounds on Akt and JNK signaling pathways. 

The PDE4 family members that appeared in both 
activity and target prediction results (Table 2 and 
Table 3) coded by four genes; PDE4A, PDE4B, PDE4C 
and PDE4D [34]. PDE4A, which has been predicted 
to be a common target of all three derivatives 
by activity and target predictions, belongs to a 
protein family functioning in the cell signaling 
by hydrolyzing cyclic AMP (cAMP) and cyclic 
GMP (cGMP) [35]. PDE4A has been proposed as a 
potential therapeutic target for the anxiety and 
central nervous system disorders with its role in 
regulation of anxiety and emotional memory [36]. 
In addition, the therapeutic effects of inhibition of 
PDE family members have been shown in several 
health problems [37]. Phosphodiesterase inhibitors 
have been used as therapeutics for autoimmune 
diseases [38] and cancers [39]. Previously, 
triazolothiadiazines were shown to bind and 
inhibit PDE4 [40]. According to target and activity 
prediction and molecular docking results (Figure 
3, Table 2 and Table 3), compounds 1h, 3c and 3h 
might interact with PDE4A. Therefore, 1h, 3c and 

3h might be PDE4A inhibitors and their potential 
therapeutic effect on PDE4A related diseases 
is worth to evaluate with further experimental 
studies.

In conclusion, activity and target prediction results 
proposed new possible activities and targets for 
the compounds 1h, 3c and 3h. Due to the relevance 
of predicted activities and targets with cellular 
mechanisms, all three derivatives might have 
different therapeutic activities, which need to be 
tested with experimental studies.
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